Tag Archives: Limit
$f(x)=x^6+2x^4+x^3+2x+3 $$\mathop {\lim }\limits_{x \to 1} \frac{{{x^n}f(1) – f(x)}}{{x – 1}} = 44$$n=?$
Let $f(x)=x^6+2x^4+x^3+2x+3,x \in R $. Then the natural number n for which $\mathop {\lim }\limits_{x \to 1} \frac{{{x^n}f(1) – f(x)}}{{x – 1}} = 44$ is _ _ _ _ .
Solution
Since the limit has $\left[ {\frac{0}{0}} \right]$ form, L.H. Rule is applicable.
Thus, $\mathop {\lim }\limits_{x \to 1} n{x^{n – 1}}f(1) – f'(x) = 44$
$\therefore nf(1) – f'(1) = 44$
$\therefore n.9 – ({6.1^5} + {8.1^3} + {3.1^2} + 2.1) = 44$
$ \Rightarrow 9n – 19 = 44$
$\Rightarrow n=7$
Let \(\alpha (a)\) and \(\beta (a)\) be the roots ………
Let and
be the roots of the equation
where a>-1.
Then and
are
(A) and 1 (B)
and -1 (C)
and 2 (D)
and 3
[Note: If equations above are not visible, please click here.]
[JEE 2012]
Continue reading Let \(\alpha (a)\) and \(\beta (a)\) be the roots ………