Category Archives: Mathematics

Prove that,

${\sin ^3}30^\circ – {\sin ^3}18^\circ = {\sin ^2}18^\circ $

We have, ${\sin ^3}18^\circ + {\sin ^2}18^\circ = {\sin ^2}18^\circ (\sin 18^\circ + 1)$

$ = {\left( {\frac{{\sqrt 5 – 1}}{4}} \right)^2}\left( {\frac{{\sqrt 5 – 1}}{4} + 1} \right)$

$ = \frac{{6 – 2\sqrt 5 }}{{16}} \times \frac{{\sqrt 5 + 3}}{4}$

$ = \frac{{3 – \sqrt 5 }}{8} \times \frac{{3 + \sqrt 5 }}{4}$

$ = \frac{{9 – 5}}{{8 \times 4}} = \frac{1}{8} = {\sin ^3}30^\circ $

$ \Rightarrow {\sin ^2}18^\circ = {\sin ^3}30^\circ – {\sin ^3}18^\circ $

$\frac{{1 – i\sin \theta }}{{1 + i\cos \theta }} = z$

${\mathop{\rm Im}\nolimits} (z) = 0$

$\theta = ?$

$z = \frac{{1 – i\sin \theta }}{{1 + i\cos \theta }} \times \frac{{1 – i\cos \theta }}{{1 – i\cos \theta }}$

$ = \frac{{1 – i(\cos \theta + \sin \theta ) + {i^2}\sin \theta \cos \theta }}{{1 – {i^2}{{\cos }^2}\theta }}$

$ = \frac{{1 – \sin \theta \cos \theta – i(\cos \theta + \sin \theta )}}{{1 + {{\cos }^2}\theta }}$

$\because {\mathop{\rm Im}\nolimits} (z) = 0,\cos \theta + \sin \theta = 0$

$\Rightarrow \tan \theta = -1 $

$\Rightarrow \theta = n\pi – \frac {\pi}{4}$,$n\in I$

$f(x) = {\log _2}\left( {1 + \tan \left( {\frac{{\pi x}}{4}} \right)} \right)$

$\mathop {\lim }\limits_{n \to \infty } \frac{2}{n}\left( {f\left( {\frac{1}{n}} \right) + f\left( {\frac{2}{n}} \right) + ………… + f(1)} \right)$=?

Let $f: (0, 2) \to R $ be defined as $f(x) = {\log _2}\left( {1 + \tan \left( {\frac{{\pi x}}{4}} \right)} \right)$. Then $\mathop {\lim }\limits_{n \to \infty } \frac{2}{n}\left( {f\left( {\frac{1}{n}} \right) + f\left( {\frac{2}{n}} \right) + ………… + f(1)} \right)$ is equal to _ _ _ _ . Continue reading $f(x) = {\log _2}\left( {1 + \tan \left( {\frac{{\pi x}}{4}} \right)} \right)$

$\mathop {\lim }\limits_{n \to \infty } \frac{2}{n}\left( {f\left( {\frac{1}{n}} \right) + f\left( {\frac{2}{n}} \right) + ………… + f(1)} \right)$=?