Area Bounded by

Tangent to $xy=c^2$ & x-y Axis

The area of triangle OAB bounded by the tangent to $xy=c^2$ in the 1st quadrant, x-axis & y-axis is (refer figure):

(1) Maximum if P is the midpoint of AB
(2) Increases as P moves downwards or upwards
(3) Constant
(4) Independent of c

Solution

$xy=c^2$ is rectangular hyperbola. The equation of tangent in parametric form at some point P $(ct, \frac {c}{t})$ is given by,

$\frac {x}{t}+yt=2c$

At point A, $x=2ct=OA$

At point B, $y=\frac {2c}{t}=OB$

Area of $\Delta OAB$ = $\frac {1}{2}.OA.OB$ = $\frac {1}{2}.2ct.\frac {2c}{t}$ = $2c^2$

Hence, Option (3).

Prove That,

$\cos \frac{\pi }{7}-\cos \frac{{2\pi }}{7}+\cos \frac{{3\pi}}{7}=\frac{1}{2}$

L.H.S.=$\cos \frac{\pi }{7} – \cos \frac{{2\pi }}{7} + \cos \frac{{3\pi }}{7}$

= $\cos \frac{\pi }{7} + \cos \frac{{3\pi }}{7} – \cos \left( {\pi – \frac{{5\pi }}{7}} \right)$

= $\cos \frac{\pi }{7} + \cos \frac{{3\pi }}{7} + \cos \frac{{5\pi }}{7}$

= $\cos \left( {\frac{\pi }{7} + \frac{{3 – 1}}{2}.\frac{{2\pi }}{7}} \right).\frac{{\sin \left( {3.\frac{{2\pi /7}}{2}} \right)}}{{\sin \left( {\frac{{2\pi /7}}{2}} \right)}}$ Continue reading Prove That,

$\cos \frac{\pi }{7}-\cos \frac{{2\pi }}{7}+\cos \frac{{3\pi}}{7}=\frac{1}{2}$

IIT-JEE & NEET Coaching by IIT Alumnus Online and Bhopal