The equation of the plane containing the line $2 x-5 y+z=3, x+y+4 z=5$ and parallel to the plane $x+3 y+6 z=1$ is
(1) $x+3 y+6 z=-7$
(2) $x+3 y+6 z=7$
(3) $2 x+6 y+12 z=-13$
(4) $2 x+6 y+12 z=13$

Solution

Equation of plane parallel to $x+3 y+6 z=1$ is $P \equiv x+3 y+6 z=k$
Plane passing through the intersection of $2 x-5 y+z=3$ and $x+y+4 z=5$ is given by $P^{\prime} \equiv(2 x-5 y+z-3)+\lambda(x+y+4 z-5)=0$

Or, $P^{\prime} \equiv(2+\lambda) x+(-5+\lambda) y+(1+4 \lambda) z=3+5 \lambda$
$\because P \equiv P^{\prime}, \frac{2+\lambda}{1}=\frac{-5+\lambda}{3}=\frac{1+4 \lambda}{6}=\frac{3+5 \lambda}{k}$
$\frac{2+\lambda}{1}=\frac{-5+\lambda}{3}$ yields $\lambda=-\frac{11}{2}$
$\frac{2+\lambda}{1}=\frac{3+5 \lambda}{k}$ yields $k=7$
Hence, the required plane is $x+3 y+6 z=7$
Option (2)

