Category Archives: IIT JEE

In acute angled $\Delta ABC$ prove that,

$sin A + sin B + sin C > cos A + cos B + cos C$

In acute angled triangle, $\cos \frac{A}{2} > \sin \frac{A}{2}$

So, $\sin \frac{A}{2}.\cos \frac{A}{2} > \sin \frac{A}{2}.\sin \frac{A}{2}$

Hence, $2\sin \frac{A}{2}\cos \frac{A}{2} > 2{\sin ^2}\frac{A}{2}$

Thus, $\sin A > 1 – \cos A$

Likewise, $\sin B > 1 – \cos B$ & $\sin C > 1 – \cos C$ Continue reading In acute angled $\Delta ABC$ prove that,

$sin A + sin B + sin C > cos A + cos B + cos C$

Area Bounded by

Tangent to $xy=c^2$ & x-y Axis

The area of triangle OAB bounded by the tangent to $xy=c^2$ in the 1st quadrant, x-axis & y-axis is (refer figure):

(1) Maximum if P is the midpoint of AB
(2) Increases as P moves downwards or upwards
(3) Constant
(4) Independent of c

Solution

$xy=c^2$ is rectangular hyperbola. The equation of tangent in parametric form at some point P $(ct, \frac {c}{t})$ is given by,

$\frac {x}{t}+yt=2c$

At point A, $x=2ct=OA$

At point B, $y=\frac {2c}{t}=OB$

Area of $\Delta OAB$ = $\frac {1}{2}.OA.OB$ = $\frac {1}{2}.2ct.\frac {2c}{t}$ = $2c^2$

Hence, Option (3).

Prove that,

$\int\limits_0^1 {\frac{1}{{x(1 + x)}}.\ln \left[ {\frac{1}{{1 + x(1 + x)}}} \right]dx} = $

$\frac{4}{3}\left( {1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{4^2}}} + ……..\infty \, terms} \right)$

The given integral =$ – \int\limits_{ – 1}^0 {\frac{{\ln (1 + x + {x^2})}}{{x(1 + x)}}dx} $

$ = \int\limits_{ – 1}^0 {\frac{{\ln (1 + x + {x^2})}}{{1 + x}}dx} – \int\limits_{ – 1}^0 {\frac{{\ln (1 + x + {x^2})}}{x}dx} $

$ = \int\limits_{ – 1}^0 {\frac{{\ln \left[ {1 + ( – 1 – x) + {{( – 1 – x)}^2}} \right]}}{{1 + (-1-x)}}dx} – \int\limits_{ – 1}^0 {\frac{{\ln (1 + x + {x^2})}}{x}dx} $

$ = \int\limits_{ – 1}^0 {\frac{{\ln (1 + x + {x^2})}}{{ – x}}dx} – \int\limits_{ – 1}^0 {\frac{{\ln (1 + x + {x^2})}}{x}dx} $

$ = – 2\int\limits_{ – 1}^0 {\frac{{\ln (1 + x + {x^2})}}{x}dx} $

$ = – 2\int\limits_{ – 1}^0 {\frac{{\ln \frac{{(1 – x)(1 + x + {x^2})}}{{(1 – x)}}}}{x}dx} $ Continue reading Prove that,

$\int\limits_0^1 {\frac{1}{{x(1 + x)}}.\ln \left[ {\frac{1}{{1 + x(1 + x)}}} \right]dx} = $

$\frac{4}{3}\left( {1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{4^2}}} + ……..\infty \, terms} \right)$