In $\Delta ABC$,

$\left| {\begin{array}{*{20}{c}}{\cos 3A}&{\cos 3B}&{\cos 3C}\\{\cos A}&{\cos B}&{\cos C}\\{\sin A}&{\sin B}&{\sin C}\end{array}} \right| = 0$

Select the right option

(A) Triangle is isosceles
(B) Triangle is equilateral
(C) Triangle is right angled
(D) Triangle is scalene

We have, $\left| {\begin{array}{*{20}{c}}{4{{\cos }^3}A – 3\cos A}&{4{{\cos }^3}B – 3\cos B}&{4{{\cos }^3}C – 3\cos C}\\{\cos A}&{\cos B}&{\cos C}\\{\sin A}&{\sin B}&{\sin C}\end{array}} \right| = 0$

$ \Rightarrow \left| {\begin{array}{*{20}{c}}{4{{\cos }^3}A}&{4{{\cos }^3}B}&{4{{\cos }^3}C}\\{\cos A}&{\cos B}&{\cos C}\\{\sin A}&{\sin B}&{\sin C}\end{array}} \right| – \left| {\begin{array}{*{20}{c}}{3\cos A}&{3\cos B}&{3\cos C}\\{\cos A}&{\cos B}&{\cos C}\\{\sin A}&{\sin B}&{\sin C}\end{array}} \right| = 0$

$ \Rightarrow \left| {\begin{array}{*{20}{c}}{{{\cos }^3}A}&{{{\cos }^3}B}&{{{\cos }^3}C}\\{\cos A}&{\cos B}&{\cos C}\\{\sin A}&{\sin B}&{\sin C}\end{array}} \right| = 0$ as the 2nd determinant is 0.

$ \Rightarrow \cos A.\cos B.\cos C\left| {\begin{array}{*{20}{c}}{{{\cos }^2}A}&{{{\cos }^2}B}&{{{\cos }^2}C}\\1&1&1\\{\tan A}&{\tan B}&{\tan C}\end{array}} \right| = 0$ Continue reading In $\Delta ABC$,

$\left| {\begin{array}{*{20}{c}}{\cos 3A}&{\cos 3B}&{\cos 3C}\\{\cos A}&{\cos B}&{\cos C}\\{\sin A}&{\sin B}&{\sin C}\end{array}} \right| = 0$

Select the right option

$\int\limits_0^1 {\frac{{{x^{e – 1}} – 1}}{{\ln x}}dx} = ?$

Using the result,

For $I(\lambda ) = \int\limits_a^b {f(x,\lambda )dx} $, $\frac{{dI(\lambda )}}{{d\lambda }} = \int\limits_a^b {\left[ {\frac{\partial }{{\partial \lambda }}f(x,\lambda )} \right]dx} $

Let, $I(\lambda ) = \int\limits_0^1 {\frac{{{x^\lambda } – 1}}{{\ln x}}dx} $

$\frac{{dI(\lambda )}}{{d\lambda }} = \int\limits_0^1 {\left[ {\frac{\partial }{{\partial \lambda }}\left( {\frac{{{x^\lambda } – 1}}{{\ln x}}} \right)} \right]dx} $ Continue reading $\int\limits_0^1 {\frac{{{x^{e – 1}} – 1}}{{\ln x}}dx} = ?$

Evaluate,

$\mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{{{(\cos x + \cos 3x + \sin 2x)}^2}}}{{{{(\sin x – \sin 3x + 2\cos 2x)}^3}}}$

The given limit,

$ = \mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{{{(2\cos 2x\cos x + 2\sin x\cos x)}^2}}}{{{{( – 2\cos 2x\sin x + 2\cos 2x)}^3}}}$

$ = \mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{{{\cos }^2}x{{(\cos 2x + \sin x)}^2}}}{{2{{\cos }^3}2x{{( – \sin x + 1)}^3}}}$

$\mathop { = \lim }\limits_{x \to \frac{\pi }{2}} \frac{{(1 + \sin x)(1 – \sin x){{(\cos 2x + \sin x)}^2}}}{{2{{\cos }^3}2x{{( – \sin x + 1)}^3}}}$ Continue reading Evaluate,

$\mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{{{(\cos x + \cos 3x + \sin 2x)}^2}}}{{{{(\sin x – \sin 3x + 2\cos 2x)}^3}}}$