The number of solution(s) the equation ${x^{{x^2}}} = {x^{4x + 5}}$ has:
(A) One solution only (B) Two solutions
(C) Three solutions (D) No solution
The number of solution(s) the equation ${x^{{x^2}}} = {x^{4x + 5}}$ has:
(A) One solution only (B) Two solutions
(C) Three solutions (D) No solution
(A) Triangle is isosceles
(B) Triangle is equilateral
(C) Triangle is right angled
(D) Triangle is scalene
We have, $\left| {\begin{array}{*{20}{c}}{4{{\cos }^3}A – 3\cos A}&{4{{\cos }^3}B – 3\cos B}&{4{{\cos }^3}C – 3\cos C}\\{\cos A}&{\cos B}&{\cos C}\\{\sin A}&{\sin B}&{\sin C}\end{array}} \right| = 0$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}{4{{\cos }^3}A}&{4{{\cos }^3}B}&{4{{\cos }^3}C}\\{\cos A}&{\cos B}&{\cos C}\\{\sin A}&{\sin B}&{\sin C}\end{array}} \right| – \left| {\begin{array}{*{20}{c}}{3\cos A}&{3\cos B}&{3\cos C}\\{\cos A}&{\cos B}&{\cos C}\\{\sin A}&{\sin B}&{\sin C}\end{array}} \right| = 0$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}{{{\cos }^3}A}&{{{\cos }^3}B}&{{{\cos }^3}C}\\{\cos A}&{\cos B}&{\cos C}\\{\sin A}&{\sin B}&{\sin C}\end{array}} \right| = 0$ as the 2nd determinant is 0.
$ \Rightarrow \cos A.\cos B.\cos C\left| {\begin{array}{*{20}{c}}{{{\cos }^2}A}&{{{\cos }^2}B}&{{{\cos }^2}C}\\1&1&1\\{\tan A}&{\tan B}&{\tan C}\end{array}} \right| = 0$ Continue reading In $\Delta ABC$,
$\left| {\begin{array}{*{20}{c}}{\cos 3A}&{\cos 3B}&{\cos 3C}\\{\cos A}&{\cos B}&{\cos C}\\{\sin A}&{\sin B}&{\sin C}\end{array}} \right| = 0$
Select the right option
Using $A.M. \ge G.M.$,
$\frac{{{e^x} + {e^{ – x}}}}{2} \ge \sqrt {{e^x}.{e^{ – x}}} $
$ \Rightarrow {e^x} + {e^{ – x}} \ge 2$
$\therefore \sin ({\pi ^x}) \ge 2$ which is not possible for any real x.
So, no solution.
Using the result,
For $I(\lambda ) = \int\limits_a^b {f(x,\lambda )dx} $, $\frac{{dI(\lambda )}}{{d\lambda }} = \int\limits_a^b {\left[ {\frac{\partial }{{\partial \lambda }}f(x,\lambda )} \right]dx} $
Let, $I(\lambda ) = \int\limits_0^1 {\frac{{{x^\lambda } – 1}}{{\ln x}}dx} $
$\frac{{dI(\lambda )}}{{d\lambda }} = \int\limits_0^1 {\left[ {\frac{\partial }{{\partial \lambda }}\left( {\frac{{{x^\lambda } – 1}}{{\ln x}}} \right)} \right]dx} $ Continue reading $\int\limits_0^1 {\frac{{{x^{e – 1}} – 1}}{{\ln x}}dx} = ?$
We have, $f'(x) = \mathop {\lim }\limits_{h \to 0} \frac{{f(x + h) – f(x)}}{h}$
$ = \mathop {\lim }\limits_{h \to 0} \frac{{2xh + f(h)}}{h}$
$ = 2x + \mathop {\lim }\limits_{h \to 0} \frac{{f(h)}}{h}$ Continue reading f is differentiable function such that
$f(x + y) – f(x) = f(y) + 2xy$
$x,y \in R$
$f(x) = ?$
The given limit,
$ = \mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{{{(2\cos 2x\cos x + 2\sin x\cos x)}^2}}}{{{{( – 2\cos 2x\sin x + 2\cos 2x)}^3}}}$
$ = \mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{{{\cos }^2}x{{(\cos 2x + \sin x)}^2}}}{{2{{\cos }^3}2x{{( – \sin x + 1)}^3}}}$
$\mathop { = \lim }\limits_{x \to \frac{\pi }{2}} \frac{{(1 + \sin x)(1 – \sin x){{(\cos 2x + \sin x)}^2}}}{{2{{\cos }^3}2x{{( – \sin x + 1)}^3}}}$ Continue reading Evaluate,
$\mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{{{(\cos x + \cos 3x + \sin 2x)}^2}}}{{{{(\sin x – \sin 3x + 2\cos 2x)}^3}}}$
Substituting 361 in place of x,
$f(361 + \sqrt {361} ) = 361 – \sqrt {361} $
$ \Rightarrow f(361 + 19) = 361 – 19$
$ \Rightarrow f(380) = 342$