Number of solutions to the equation ${x^{{x^x}}} = x$

(A) 1        (B) 2        (C) 3        (D) None of the options given

We have, ${x^{\left( {{x^x}} \right)}} = x$

Taking log, ${x^x}\ln |x| = \ln |x|$

$ \Rightarrow \ln |x|\left( {{x^x} – 1} \right) = 0$

$\ln |x| = 0,x = \pm 1$ Or ${x^x} = 1$

Taking log, $x\ln |x| = 0$

x = 0 Or $\ln |x| = 0,x = \pm 1$

x = 0 is rejected as it leads to $0^0$ situation.

Hence, two solutions or option (B).

Solve for $x \in \mathbb{R}$,

$\frac{{(x + 2)(x + 3)(x + 4)(x + 5)}}{{(x – 2)(x – 3)(x – 4)(x – 5)}} = 1$

We have, $\frac{{({x^2} + 5x + 6)({x^2} + 9x + 20)}}{{({x^2} – 5x + 6)({x^2} – 9x + 20)}} = 1$

$ \Rightarrow \frac{{{x^2} + 9x + 20}}{{{x^2} – 5x + 6}} = \frac{{{x^2} – 9x + 20}}{{{x^2} + 5x + 6}} = \frac{{({x^2} + 9x + 20) – ({x^2} – 9x + 20)}}{{({x^2} – 5x + 6) – ({x^2} + 5x + 6)}} = \frac{{18x}}{{ – 10x}} = – \frac{{9}}{{5}}$
(assuming $x \ne 0$)

$ \Rightarrow \frac{{{x^2} + 9x + 20}}{{{x^2} – 5x + 6}} – 1 = – \frac{9}{5} – 1$

$ \Rightarrow \frac{{14x + 14}}{{{x^2} – 5x + 6}} = – \frac{{14}}{5}$

$ \Rightarrow \frac{{x + 1}}{{{x^2} – 5x + 6}} = – \frac{1}{5}$

$ \Rightarrow {x^2} – 5x + 6 + 5x + 5 = 0$ Or ${x^2} + 11 = 0$

So, no real solution if $x \neq 0$.

If x = 0, LHS of the original equation = $\frac{{2 \times 3 \times 4 \times 5}}{{( – 2) \times ( – 3) \times ( – 4) \times ( – 5)}}$ = 1 = RHS

Thus, x = 0 is the only real solution.

$\int\limits_{ – \frac{\pi }{6}}^{\frac{\pi }{6}} {\frac{{6{x^5} + \frac{{{x^3}}}{3} + \ln \frac{{1 – x}}{{1 + x}} + 1 + \sin x}}{{1 + \cos 2x}}} dx = ?$

The given integral can be split as,

$ \int\limits_{ – \frac{\pi }{6}}^{\frac{\pi }{6}} {\frac{{6{x^5} + \frac{{{x^3}}}{3} + \ln \frac{{1 – x}}{{1 + x}} + \sin x}}{{1 + \cos 2x}}} dx + \int\limits_{ – \frac{\pi }{6}}^{\frac{\pi }{6}} {\frac{1}{{1 + \cos 2x}}} dx$

$\frac{{6{x^5} + \frac{{{x^3}}}{3} + \ln \frac{{1 – x}}{{1 + x}} + \sin x}}{{1 + \cos 2x}}$ is an odd function. Thus, the given integral

$ = 0 + \int\limits_{ – \frac{\pi }{6}}^{\frac{\pi }{6}} {\frac{1}{{2{{\cos }^2}x}}} dx = \frac{1}{2}\int\limits_{ – \frac{\pi }{6}}^{\frac{\pi }{6}} {{{\sec }^2}xdx} = \frac{1}{2}\left. {\tan x} \right|_{ – \frac{\pi }{6}}^{\frac{\pi }{6}} = \frac{1}{{\sqrt 3 }}$

IIT-JEE & NEET Coaching by IIT Alumnus Online and Bhopal