Category Archives: IIT JEE

$y = \frac{{{x^2} – \alpha \beta }}{{2x – \alpha – \beta }}$

$x \in \mathbb{R} – \left\{ {\frac{{\alpha + \beta }}{2}} \right\}$

Assuming $\beta > \alpha $ which of the following option(s) is/are correct?

(A) $y \le \alpha $
(B) $y \ge \beta $
(C) $\alpha \le y \le \beta $
(D) $y \in \mathbb{R}$ Continue reading $y = \frac{{{x^2} – \alpha \beta }}{{2x – \alpha – \beta }}$

$x \in \mathbb{R} – \left\{ {\frac{{\alpha + \beta }}{2}} \right\}$

$\int\limits_{ – \frac{\pi }{6}}^{\frac{\pi }{6}} {\frac{{6{x^5} + \frac{{{x^3}}}{3} + \ln \frac{{1 – x}}{{1 + x}} + 1 + \sin x}}{{1 + \cos 2x}}} dx = ?$

The given integral can be split as,

$ \int\limits_{ – \frac{\pi }{6}}^{\frac{\pi }{6}} {\frac{{6{x^5} + \frac{{{x^3}}}{3} + \ln \frac{{1 – x}}{{1 + x}} + \sin x}}{{1 + \cos 2x}}} dx + \int\limits_{ – \frac{\pi }{6}}^{\frac{\pi }{6}} {\frac{1}{{1 + \cos 2x}}} dx$

$\frac{{6{x^5} + \frac{{{x^3}}}{3} + \ln \frac{{1 – x}}{{1 + x}} + \sin x}}{{1 + \cos 2x}}$ is an odd function. Thus, the given integral

$ = 0 + \int\limits_{ – \frac{\pi }{6}}^{\frac{\pi }{6}} {\frac{1}{{2{{\cos }^2}x}}} dx = \frac{1}{2}\int\limits_{ – \frac{\pi }{6}}^{\frac{\pi }{6}} {{{\sec }^2}xdx} = \frac{1}{2}\left. {\tan x} \right|_{ – \frac{\pi }{6}}^{\frac{\pi }{6}} = \frac{1}{{\sqrt 3 }}$

Consider a frame that is made up of two …

Consider a frame that is made up of two thin massless rods AB and AC as shown in the figure. A vertical force $\vec P$ of magnitude 100N is applied at point A of the frame. Suppose the force $\vec P$ is resolved parallel to the arms AB and AC of the frame. The magnitude of the resolved component along the arm AC is xN. The value of x, to the nearest integer, is————.

[Given: $\sin 35^\circ = 0.573,{\rm{ }}\cos 35^\circ = 0.819,{\rm{ }}\sin 110^\circ = 0.939,{\rm{ }}\cos 110^\circ = – 0.342$] Continue reading Consider a frame that is made up of two …

$f(x) + f(x + 1) = 2$

$\int\limits_0^8 {f(x)dx + 2\int\limits_{ – 1}^3 {f(x)dx} } = ?$

Let $f:R \to R$ be a continuous function such that $f(x) + f(x + 1) = 2$, for all $x\in R$. If ${I_1} = \int\limits_0^8 {f(x)dx} $ and ${I_2} = \int\limits_{ – 1}^3 {f(x)dx} $, then the value of $I_1 +2I_2 $ is equal to …… Continue reading $f(x) + f(x + 1) = 2$

$\int\limits_0^8 {f(x)dx + 2\int\limits_{ – 1}^3 {f(x)dx} } = ?$

Consider a 20 kg uniform circular disk …

Consider a 20 kg uniform circular disk of radius 0.2 m. It is pin supported at its centre and is at rest initially. The disk is acted upon by a constant force F = 20 N through a massless string wrapped around its periphery as shown in the figure. Suppose the disk makes n number of revolutions to attain an angular speed of 50 rad/s. The value of n, to the nearest integer, is ———. [Given : In one complete revolution, the disk rotates by 6.28 rad] Continue reading Consider a 20 kg uniform circular disk …