A ladder of length l=2√6 unit is resting against a wall just touching the cube of edge 1 unit as shown in the figure. Find h above the cube.
Solution
We have, tanθ=h and sinθ=h+1l
So, 2√6sinθ=1+tanθ
⇒√6(2sinθcosθ)=cosθ+sinθ
Squaring, (√6sin2θ)2=(cosθ+sinθ)2
⇒6sin22θ=1+sin2θ
Let, sin2θ=t
We have, 6t2–t–1=0
⇒6t2–3t+2t–1=0
⇒3t(2t–1)+(2t–1)=0
⇒(3t+1)(2t–1)=0
Thus, t=12=sin2θ
[Since, sin2θ>0 the other solution is rejected.]
∴2θ=30∘,150∘
Or, θ=15∘,75∘
Now, h=tanθ=tan15∘,tan75∘=2±√3