If y = y(x) is the solution to the differential equation, dydx+2ytanx=sinx, y(π3)=0, then the maximum value of the function y(x) over R is equal to:
(A) 12
(B) 18
(C) −154
(D) 8
Solution
We have linear differential equation whose solution can be obtained from,
y.IF=∫IF.sinxdx where,
IF=e∫2tanxdx=e2ln|secx|=sec2x
So, y.sec2x=∫sec2x.sinxdx=∫secx.tanxdx=secx+C
∵y(π3)=0,0.sec2π3=secπ3+C
∴C=–2
So, y.sec2x=secx–2
⇒y=secx–2sec2x=cosx–2cos2x
∴y=–2(cos2x–12cosx)=–2[(cosx–14)2–116]
So, y=18–(non–negative)
∴ymax=18
Answer: (B)