dydx+2ytanx=sinx

y(π3)=0

ymax=?

If y = y(x) is the solution to the differential equation, dydx+2ytanx=sinx, y(π3)=0, then the maximum value of the function y(x) over R is equal to:

(A) 12
(B) 18
(C) 154
(D) 8

Solution

We have linear differential equation whose solution can be obtained from,

y.IF=IF.sinxdx where,

IF=e2tanxdx=e2ln|secx|=sec2x

So, y.sec2x=sec2x.sinxdx=secx.tanxdx=secx+C

y(π3)=0,0.sec2π3=secπ3+C

C=2

So, y.sec2x=secx2

y=secx2sec2x=cosx2cos2x

y=2(cos2x12cosx)=2[(cosx14)2116]

So, y=18(nonnegative)

ymax=18

Answer: (B)

Leave a Reply