Category Archives: Math

${S_n} = \frac{1}{3} + \frac{1}{{15}} + \frac{1}{{35}} + \frac{1}{{63}} + ……… = ?$

${t_r} = \frac{1}{{4{r^2} – 1}}$

$ = \frac{1}{{(2r – 1)(2r + 1)}} = \frac{1}{2}\left( {\frac{1}{{2r – 1}} – \frac{1}{{2r + 1}}} \right)$

${S_n} = \sum\limits_{r = 1}^n {\frac{1}{2}\left( {\frac{1}{{2r – 1}} – \frac{1}{{2r + 1}}} \right)} $

${S_n} = \frac{1}{2}\left[ {\left( {\frac{1}{1} – \frac{1}{3}} \right) + \left( {\frac{1}{3} – \frac{1}{5}} \right) + \left( {\frac{1}{5} – \frac{1}{7}} \right) + ……. + \left( {\frac{1}{{2n – 1}} – \frac{1}{{2n + 1}}} \right)} \right]$

${S_n} = \frac{1}{2}\left[ {1 – \frac{1}{{2n + 1}}} \right] = \frac{n}{{2n + 1}}$

${\sin ^2}{1^\circ } + {\sin ^2}{2^\circ } + ………… + {\sin ^2}{180^\circ } = ?$

The given expression can be written as,

$\frac{1}{2}\left[ {(1 – \cos {2^\circ }) + (1 – \cos {4^\circ }) + ……………. + (1 – \cos {{360}^\circ })} \right]$

$ = \frac{1}{2}\left[ {(1 + 1 + …….. + 1) – (\cos {2^\circ } + \cos {4^\circ } + ……….. + \cos {{360}^\circ })} \right]$

There are 180 terms in the series.

$ = \frac{1}{2}\left[ {180 – \frac{{\cos \left( {{2^\circ } + \frac{{180 – 1}}{2} \times {2^\circ }} \right)\sin \left( {\frac{{180 \times {2^\circ }}}{2}} \right)}}{{\sin \left( {\frac{{{2^\circ }}}{2}} \right)}}} \right]$

$ = \frac{1}{2}\left( {180 – \frac{{\cos {{181}^\circ }\sin {{180}^\circ }}}{{\sin {1^\circ }}}} \right) = 90$

Prove that, ${\left( {\frac{{1 + \sin \theta + i\cos \theta }}{{1 + \sin \theta – i\cos \theta }}} \right)^n} =$

$\cos n\left( {\frac{\pi }{2} – \theta } \right) + i\sin n\left( {\frac{\pi }{2} – \theta } \right)$

LHS = ${\left[ {\frac{{(1 + \sin \theta + i\cos \theta )(\sin \theta + i\cos \theta )}}{{\{ 1 + (\sin \theta – i\cos \theta )\} (\sin \theta + i\cos \theta )}}} \right]^n}$

$ = {\left[ {\frac{{(1 + \sin \theta + i\cos \theta )(\sin \theta + i\cos \theta )}}{{(\sin \theta + i\cos \theta ) + \{ {{\sin }^2}\theta – {{(i\cos \theta )}^2}\} }}} \right]^n}$

$ = {\left[ {\frac{{(1 + \sin \theta + i\cos \theta )(\sin \theta + i\cos \theta )}}{{(\sin \theta + i\cos \theta ) + ({{\sin }^2}\theta + {{\cos }^2}\theta )}}} \right]^n}$

$ = {\left[ {\frac{{(1 + \sin \theta + i\cos \theta )(\sin \theta + i\cos \theta )}}{{(1 + \sin \theta + i\cos \theta )}}} \right]^n}$

$ = {(\sin \theta + i\cos \theta )^n}$

$ = {\left\{ {\cos \left( {\frac{\pi }{2} – \theta } \right) + i\sin \left( {\frac{\pi }{2} – \theta } \right)} \right\}^n}$

$ = \cos n\left( {\frac{\pi }{2} – \theta } \right) + i\sin n\left( {\frac{\pi }{2} – \theta } \right)$

= RHS

Prove That,

$\cos \frac{\pi }{7}-\cos \frac{{2\pi }}{7}+\cos \frac{{3\pi}}{7}=\frac{1}{2}$

L.H.S.=$\cos \frac{\pi }{7} – \cos \frac{{2\pi }}{7} + \cos \frac{{3\pi }}{7}$

= $\cos \frac{\pi }{7} + \cos \frac{{3\pi }}{7} – \cos \left( {\pi – \frac{{5\pi }}{7}} \right)$

= $\cos \frac{\pi }{7} + \cos \frac{{3\pi }}{7} + \cos \frac{{5\pi }}{7}$

= $\cos \left( {\frac{\pi }{7} + \frac{{3 – 1}}{2}.\frac{{2\pi }}{7}} \right).\frac{{\sin \left( {3.\frac{{2\pi /7}}{2}} \right)}}{{\sin \left( {\frac{{2\pi /7}}{2}} \right)}}$ Continue reading Prove That,

$\cos \frac{\pi }{7}-\cos \frac{{2\pi }}{7}+\cos \frac{{3\pi}}{7}=\frac{1}{2}$