All posts by Manish Verma

IITian ~ Consultant & Educator manishverma.site

$I = \int\limits_{ – \pi }^\pi {\frac{{{{\sin }^2}x}}{{1 + {e^x}}}dx} = ?$

Let $x=-t$, so $dx=-dt$

$I = \int\limits_\pi ^{ – \pi } { – \frac{{{{\sin }^2}t}}{{1 + {e^{ – t}}}}dt} = \int\limits_{ – \pi }^\pi {\frac{{{e^t}{{\sin }^2}t}}{{1 + {e^t}}}dt} = \int\limits_{ – \pi }^\pi {\frac{{{e^x}{{\sin }^2}x}}{{1 + {e^x}}}dx} $

$I + I = \int\limits_{ – \pi }^\pi {\frac{{{{\sin }^2}x}}{{1 + {e^x}}}dx} + \int\limits_{ – \pi }^\pi {\frac{{{e^x}{{\sin }^2}x}}{{1 + {e^x}}}dx} $

$ \Rightarrow 2I = \int\limits_{ – \pi }^\pi {\frac{{(1 + {e^x}){{\sin }^2}x}}{{1 + {e^x}}}dx} = \int\limits_{ – \pi }^\pi {{{\sin }^2}xdx} $

$ \Rightarrow 2I = \int\limits_0^\pi {2{{\sin }^2}xdx} = \int\limits_0^\pi {(1 – \cos 2x)dx} $

$ \Rightarrow 2I = \left. {\left( {x – \frac{{\sin 2x}}{2}} \right)} \right|_0^\pi = \pi $

$ \Rightarrow I = \frac{\pi }{2}$

$I = \int\limits_0^1 {\frac{{\ln (1 + x)}}{{1 + {x^2}}}dx} = ?$

Let, $x = \tan \theta $

$ \Rightarrow dx = {\sec ^2}\theta d\theta $

$I = \int\limits_0^{\pi /4} {\frac{{\ln (1 + \tan \theta )}}{{1 + {{\tan }^2}\theta }}{{\sec }^2}\theta d\theta } $

$ = \int\limits_0^{\pi /4} {\ln \left( {\frac{{\sin \theta + \cos \theta }}{{\cos \theta }}} \right)d\theta } $

$ = \int\limits_0^{\pi /4} {\ln (\sin \theta + \cos \theta )d\theta – \int\limits_0^{\pi /4} {\ln \cos \theta d\theta } } $

$ = \int\limits_0^{\pi /4} {\ln \left\{ {\sqrt 2 \left( {\cos \theta .\frac{1}{{\sqrt 2 }} + \sin \theta .\frac{1}{{\sqrt 2 }}} \right)} \right\}d\theta – \int\limits_0^{\pi /4} {\ln \cos \theta d\theta } } $

$ = \int\limits_0^{\pi /4} {\ln \left\{ {\sqrt 2 \left( {\cos \theta .\cos \frac{\pi }{4} + \sin \theta .\sin \frac{\pi }{4}} \right)} \right\}d\theta – \int\limits_0^{\pi /4} {\ln \cos \theta d\theta } } $

$ = \int\limits_0^{\pi /4} {\ln \left\{ {\sqrt 2 \cos \left( {\theta – \frac{\pi }{4}} \right)} \right\}d\theta – \int\limits_0^{\pi /4} {\ln \cos \theta d\theta } } $

$ = \int\limits_0^{\pi /4} {\ln \sqrt 2 d\theta + } \int\limits_0^{\pi /4} {\ln \cos \left( {\theta – \frac{\pi }{4}} \right)d\theta – \int\limits_0^{\pi /4} {\ln \cos \theta d\theta } } $

Let, $\theta – \frac{\pi }{4} = – \phi $ for the second integral.

$I = \frac{\pi }{4}\ln \sqrt 2 – \int\limits_{\pi /4}^0 {\ln \cos ( – \phi )d\phi – \int\limits_0^{\pi /4} {\ln \cos \theta d\theta } } $

$ = \frac{\pi }{4}\ln \sqrt 2 + \int\limits_0^{\pi /4} {\ln \cos \phi d\phi – \int\limits_0^{\pi /4} {\ln \cos \theta d\theta } } $

$ = \frac{\pi }{4}\ln \sqrt 2 = \frac{\pi }{8}\ln 2$

A projectile is thrown from a point O ….

A projectile is thrown from a point O on the ground at an angle 45° from the vertical and with a speed 5√2 m/s. The projectile at the highest point of its trajectory splits into two equal parts. One part falls vertically down to the ground, 0.5 s after the splitting. The other part, t seconds after the splitting, falls to the ground at a distance x meters from the point O. The acceleration due to gravity $g = 10 m/s^2$.

Q.1 The value of t is ___ .
Q.2 The value of x is ___ .

Solution

The part that falls vertically down to the ground has initial speed = 0. So, it falls freely taking 0.5 s to reach the ground. Continue reading A projectile is thrown from a point O ….

In the circuit shown, the switch S is connected to …

In the circuit shown, the switch S is connected to position P for a long time so that the charge on the capacitor becomes $q_1$ μC. Then S is switched to position Q. After a long time, the charge on the capacitor is $q_2$ μC.

Q.1 The magnitude of $q_1$ is ___ .
Q.2 The magnitude of $q_2$ is ___ .

Solution

The figure below shows the situation when switch S is connected to position P.

No current flows through the capacitor in steady state. Continue reading In the circuit shown, the switch S is connected to …

Prove that,

$\sqrt {28 + 10\sqrt 3 } – \sqrt {4 + 2\sqrt 3 } $

$> \sqrt 3 + \sqrt 2 $ or $> \pi$

LHS $ = \sqrt {25 + 3 + 2 \times 5 \times \sqrt 3 } – \sqrt {3 + 1 + 2 \times \sqrt 3 \times 1} $

$ = \sqrt {{5^2} + {{\sqrt 3 }^2} + 2 \times 5 \times \sqrt 3 } – \sqrt {{{\sqrt 3 }^2} + {1^2} + 2 \times \sqrt 3 \times 1} $

$ = \sqrt {{{(5 + \sqrt 3 )}^2}} – \sqrt {{{(\sqrt 3 + 1)}^2}} $

$ = (5 + \sqrt 3 ) – (\sqrt 3 + 1) = 4$

RHS $ = \sqrt 3 + \sqrt 2 \approx 3.14 \approx \pi$

Clearly, $4 > 3.14$

$\frac{1}{{a + \frac{1}{{b + \frac{1}{c}}}}} = \frac{{16}}{{115}}$

$a,b,c \in \mathbb{N}$

Select correct option(s).

(A) a, b, c are in A.P.
(B) a, b, c are in G.P.
(C) a, b, c are in H.P.
(D) a+b+c = bc

Solution

We have, $a + \frac{1}{{b + \frac{1}{c}}} = \frac{{115}}{{16}}$

$ \Rightarrow a + \frac{c}{{bc + 1}} = \frac{{115}}{{15 + 1}}$

$ \Rightarrow a + \frac{c}{{bc + 1}} = \frac{{115}}{{5 \times 3 + 1}}$

$ \Rightarrow a + \frac{c}{{bc + 1}} = \frac{{16 \times 7 + 3}}{{5 \times 3 + 1}}$

$ \Rightarrow a + \frac{c}{{bc + 1}} = 7 + \frac{3}{{5 \times 3 + 1}}$

$\therefore \{ a,b,c\} \equiv \{ 7,5,3\} $

Hence, (A) & (D).