Take each side of the pyramid having resistance 1 ohm. Find the resistance between a and b. Treat the dashed line just like any other line, i.e. having resistance 1 ohm.

Solution

Resistance is unaffected when a 3-D circuit is converted to 2-D circuit. So, the circuit can be redrawn as follows:

Let's analyse the circuit now.

Due to symmetry, $I_{a p}=I_{p b}=I($ say $)$ and $I_{d p}=I_{p c}=I^{\prime}(s a y)$
This means that junction p can be simplified and the circuit an be redrawn as follows:

The circuit above can be simplified as series and parallel combination of resistors.

The circuit above can further be simplified as follows:

Further,

$R_{a b}=\frac{\frac{2}{3} \times \frac{8}{3}}{\frac{2}{3}+\frac{8}{3}}=\frac{2 \times 8}{3 \times 3} \times \frac{3}{10}=\frac{8}{15} \Omega$

