Consider two situations:
A point charge q is placed at a distance d from a large conducting uncharged plate. The magnitude of the force experienced by q is R.

A point charge q is placed at a distance d each from the two perpendicular conducting uncharged large plates meeting at right angle. The magnitude of the force experienced by q is S.

Find the value of the ratio S / R.

Solution

Using the method of mirror image for the first case,

$R=k \frac{q^{2}}{4 d^{2}}$
Using the method of mirror images for the second case,

S is the resultant of three forces, two attractive and one repulsive.
Each attractive force $=k \frac{q^{2}}{4 d^{2}}=R$
The two attractive forces can be combined as $R \sqrt{2}$
Repulsive force $=k \frac{q^{2}}{8 d^{2}}=R / 2$
$S=R \sqrt{2}-\frac{R}{2}$
The ratio $\mathrm{S} / \mathrm{R}=\frac{R \sqrt{2}-\frac{R}{2}}{R}=\sqrt{2}-0.5 \approx 0.91$

