Let $A B$ and $C D$ be identical rods joined at the mid-point of $A B$ forming the shape of T as shown in the figure. The ends A, B and D are maintained at $100^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ respectively. Find the temperature of the junction C .

Solution

Consider the heat currents (power) shown by arrows in the figure below.

We have, $P_{A C}=P_{C B}+P_{C D}$
$\operatorname{Or} \frac{\Delta Q_{A C}}{\Delta t}=\frac{\Delta Q_{C B}}{\Delta t}+\frac{\Delta Q_{C D}}{\Delta t}$
Or $\frac{T_{A}-T_{C}}{R_{A C}}=\frac{T_{C}-T_{B}}{R_{C B}}+\frac{T_{C}-T_{D}}{R_{C D}}$
Let thermal resistance of each rod be R.
$\therefore \frac{100-T_{C}}{R / 2}=\frac{T_{C}-0}{R / 2}+\frac{T_{C}-50}{R}$
$\Rightarrow 200-2 T_{C}=2 T_{C}+T_{C}-50$
$\Rightarrow 250=5 T_{C}$
$\Rightarrow T_{C}=50^{\circ} C$
Note that since $T_{C}=T_{D}$, there would be no heat current through CD.

