Chain of bicycle moves through two sprockets, a big and a small, the bigger one is towards the paddle side and the smaller one is towards the rear wheel side.

Consider a bicycle in which the bigger sprocket has the following:
Teeth: \mathbf{N}_{1}, Radius: r_{1}, Angular speed: ω_{1}

And the smaller sprocket has the following:
Teeth: N_{2}, Radius: r_{2}, Angular speed: ω_{2}

Let the linear speed of chain be v. Find a relationship between ω_{1} and ω_{2}.

Solution

Since chain is moving with constant linear speed,
$\omega_{1} \times r_{1}=\omega_{2} \times r_{2}$

So, $2 \pi r_{1} \times \omega_{1}=2 \pi r_{2} \times \omega_{2}$
So, circumference $\times \omega=$ constant

For chain to fit properly on both sprockets, teeth must be equally spaced.
So, circumference $\alpha \mathrm{N}$

So, $N \times \omega=$ constant
Hence, $\mathrm{N}_{1} \omega_{1}=\mathrm{N}_{2} \omega_{2}$

