A gun is mounted on a gun carriage movable on a smooth horizontal plane. The gun is elevated at an angle α to the horizontal. A shot is fired which leaves the gun in a direction inclined at an angle β to the horizontal. If the mass of gun+carriage is n times that of the shot, show that $\tan \beta=\left(1+\frac{1}{n}\right) \tan \alpha$.

Figure (I): As seen by the shooter.

Figure (II): As seen by the ground observer.

Solution

Consider ground observer. Let v be the recoil speed and u be the speed of the bullet. Let m be the mass of the bullet. So, the mass of carriage+gun system would be nm.

Using COLM along horizontal, $m . u \cos \beta=n m . v$
$\therefore v=\frac{u \cos \beta}{n}$
Now, consider the shooter as the observer.

In the figure above, the vector at angle α to the horizontal denotes the velocity of bullet with respect to the shooter.

We have, $\tan \alpha=\frac{u \sin \beta}{u \cos \beta+v}=\frac{u \sin \beta}{u \cos \beta+\frac{u \cos \beta}{n}}=\frac{\tan \beta}{1+\frac{1}{n}}$
$\therefore \tan \beta=\left(1+\frac{1}{n}\right) \tan \alpha$

