The string between mass m and 2 m is inextensible and light and the spring is ideal. If the string is cut the magnitudes of accelerations of mass 2 m and m are respectively,

(a) g, g
(b) $g, \frac{g}{2}$
(c) $\frac{g}{2}, g$
(d) $\frac{g}{2}, \frac{g}{2}$

Solution

Initially the spring force $\mathrm{kx}=3 \mathrm{mg}$ (before the string is cut)
Just after the string is cut for block 2 m ,
$\mathrm{kx}-2 \mathrm{mg}=2 \mathrm{ma}_{1}$
$\Rightarrow 3 \mathrm{mg}-2 \mathrm{mg}=2 \mathrm{ma}_{1}$
$\Rightarrow \mathrm{a}_{1}=\frac{g}{2}$ (upward direction)
For block of mass m,
$\mathrm{mg}=\mathrm{ma}_{2}$
or $\mathrm{a}_{2}=\mathrm{g}$ (downward acceleration just like freely falling body)
\therefore (c)

