The label on the bottle of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution reads as 10 volume. The concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ in percentage by volume is nearly,
(A) 3.03%
(B) 6.06%
(C) 1.51%
(D) 10\%

Solution

10 volume $\mathrm{H}_{2} \mathrm{O}_{2}$ means 1 volume $\mathrm{H}_{2} \mathrm{O}_{2}$ solution gives 10 volume O_{2}.
It is the actual amount of $\mathrm{H}_{2} \mathrm{O}_{2}$ present in the solution that is involved in the reaction,
$2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
So, 2 mol of $\mathrm{H}_{2} \mathrm{O}_{2}$ present in the solution gives 22400 ml of O_{2}.
Or $22400 \mathrm{ml} \mathrm{O}_{2}$ is formed by $68 \mathrm{gm} \mathrm{H}_{2} \mathrm{O}_{2}$ present in the solution.
So, $10 \mathrm{ml} \mathrm{O}_{2}$ is formed by $\frac{68}{22400} \times 10 \mathrm{gm} \mathrm{H}_{2} \mathrm{O}_{2}$ present in the solution.
Since, 1 volume $\mathrm{H}_{2} \mathrm{O}_{2}$ solution gives 10 volume O_{2},
Thus, $10 \mathrm{ml} \mathrm{O}_{2}$ is formed by $1 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}_{2}$ solution.
So, $1 \mathrm{ml} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}$ solution contains $\frac{68}{22400} \times 10 \mathrm{gm} \mathrm{H}_{2} \mathrm{O}_{2}$.
Therefore, $100 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}_{2}$ solution contains $\frac{68}{22400} \times 10 \times 100 \mathrm{gm} \mathrm{H}_{2} \mathrm{O}_{2}$.
Which is approximately 3.035% (by volume).
Option (A).

[123IITJEE]

