Solve for x & y; $\sqrt{x} + y = 7$ & $x + \sqrt{y} = 11$.

Solution

Putting $y = (11-x)^2$ obtained from the 2nd equation into the 1st equation,

We have,
$$\sqrt{x} + (11-x)^2 = 7$$

 $\Rightarrow x = [7 - (11-x)^2]^2$
 $= 49 + (11-x)^4 - 14(11-x)^2$

Let, 11 - x = t

So,
$$11 - t = 49 + t^4 - 14t^2$$

$$\Rightarrow t^4 - 14t^2 + t + 38 = 0$$

t=2 satisfies the above equation. So, using factor theorem ...

$$t^{3}(t-2) + 2t^{2}(t-2) - 10t(t-2) - 19(t-2) = 0$$

$$\Rightarrow (t-2)(t^{3} + 2t^{2} - 10t - 19) = 0 \quad (A)$$

Let, $f(t) = t^{3} + 2t^{2} - 10t - 19$
 $t = 11 - x = \sqrt{y} \ge 0$
 $y = 7 - \sqrt{x}, \Rightarrow y \le 7$
So, $t = \sqrt{y} \le \sqrt{7}$
Thus, $0 \le t \le \sqrt{7}$
Or, $0 \le t < 3$

Let us investigate the behaviour of f in the interval [0, 3].

f(0) = -19

f(1) = -26

f(2) = -23

The function decreases initially, then increases but is unable to cut the t-axis in the interval [0, 3).

t = 2 is the only solution as obtained earlier as per (A).

Now, 11 - x = 2 or x = 9

 $y = t^2 = 4$