Solve for $\mathrm{x} \& \mathrm{y} ; \sqrt{x}+y=7 \& x+\sqrt{y}=11$.

Solution

Putting $y=(11-x)^{2}$ obtained from the $2^{\text {nd }}$ equation into the $1^{\text {st }}$ equation,
We have, $\sqrt{x}+(11-x)^{2}=7$
$\Rightarrow x=\left[7-(11-x)^{2}\right]^{2}$

$$
=49+(11-x)^{4}-14(11-x)^{2}
$$

Let, $11-x=t$
So, $11-t=49+t^{4}-14 t^{2}$
$\Rightarrow t^{4}-14 t^{2}+t+38=0$
$\mathrm{t}=2$ satisfies the above equation. So, using factor theorem ...
$t^{3}(t-2)+2 t^{2}(t-2)-10 t(t-2)-19(t-2)=0$
$\Rightarrow(t-2)\left(t^{3}+2 t^{2}-10 t-19\right)=0$ (A)

Let, $f(t)=t^{3}+2 t^{2}-10 t-19$
$t=11-x=\sqrt{y} \geq 0$
$y=7-\sqrt{x}, \Rightarrow y \leq 7$
So, $t=\sqrt{y} \leq \sqrt{7}$
Thus, $0 \leq t \leq \sqrt{7}$
Or, $0 \leq t<3$
Let us investigate the behaviour of f in the interval $[0,3]$.
$f(0)=-19$
$f(1)=-26$
$f(2)=-23$
$f(3)=-4$
The function decreases initially, then increases but is unable to cut the t-axis in the interval $[0,3)$.
$t=2$ is the only solution as obtained earlier as per (A).
Now, $11-x=2$ or $x=9$
$y=t^{2}=4$

