An alpha-particle and a proton are fired through the same magnetic field which is perpendicular to their velocity. The alpha-particle and the proton move such that the radius of curvature of their path is same. The ratio of their de Broglie wavelength is given by:
(A) $1: 4$
(B) $4: 1$
(C) $1: 1$
(D) $1: 2$

Solution

$F_{B}=q v B \sin 90^{\circ}=q v B$
$q v B=\frac{m v^{2}}{r}$
$\therefore r=\frac{m v}{q B}$
de Broglie wavelength $\lambda=\frac{h}{m v}=\frac{h}{q B r}$
$\frac{\lambda_{\alpha}}{\lambda_{p}}=\frac{\frac{h}{q_{\alpha} B r}}{\frac{h}{q_{p} B r}}=\frac{q_{p}}{q_{\alpha}}=\frac{q_{p}}{2 q_{p}}=\frac{1}{2}$
Hence, (D)

