A scientist created a two-dimensional circuit made of uniform wire, which he called manav during his research to find the lowest resistance path in human bodies. He experimented with it by connecting it across various points across a battery. Can you help him to find the resistance between the ear* (A) of this manav and the toe (B) ?

Take the resistance per unit length of the wire $=\lambda$,
Radius of head =a,
Length of neck=n,
Length of one arm=h,
Length of the mid-section=m,

Length of one leg=I.
*Assume that the length of the arc joining the ear A to the upper part of neck is $1 / 4^{\text {th }}$ of the circle.

Solution

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { Resistances offered by both arms and one leg } \\
\text { figure as they do not form part of the circuit. } \\
R_{h 1}=\left(\frac{3}{4} \times 2 \pi a\right) \lambda=\frac{3}{2} \pi a \lambda \\
R_{h 2}=\left(\frac{1}{4} \times 2 \pi a\right) \lambda=\frac{1}{2} \pi a \lambda \\
R_{A B}=R_{h 1} \| R_{h 2}+R_{n}+R_{m}+R_{l} \\
\therefore R_{A B}=\frac{3}{8} \pi a \lambda+n \lambda+m \lambda+l \lambda
\end{array}\right\} R_{A B}=\left(\frac{3}{8} \pi a+n+m+l\right) \lambda
\end{aligned}
$$

Resistances offered by both arms and one leg are not considered in the

