If a, b and c are three positive real numbers, then the minimum value of the expression

$$\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c}$$

is

(A) 1

(B) 2

(C) 3

(D) none of these

Solution

The given expression can be written as $\left(\frac{b}{a} + \frac{a}{b}\right) + \left(\frac{c}{a} + \frac{a}{c}\right) + \left(\frac{c}{b} + \frac{b}{c}\right)$

Using $AM \ge GM$, $\frac{\frac{a}{b} + \frac{b}{a}}{2} \ge \sqrt{\frac{a}{b} \cdot \frac{b}{a}}$

$$\therefore \frac{a}{b} + \frac{b}{a} \ge 2$$

Likewise, $\frac{b}{c} + \frac{c}{b} \ge 2 \& \frac{c}{a} + \frac{a}{c} \ge 2$

Adding, we have $\left(\frac{b}{a} + \frac{a}{b}\right) + \left(\frac{c}{a} + \frac{a}{c}\right) + \left(\frac{c}{b} + \frac{b}{c}\right) \ge 6$

$$\left(\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} \right)_{\min} = 6$$

Answer: (D)