If m₁ and m₂ are the roots of the equation

$$x^{2} + (\sqrt{3} + 2)x + (\sqrt{3} - 1) = 0$$

the area of the triangle formed by the lines $y = m_1x$, $y = m_2x$ and y = c is ($k = \sqrt{11}$),

(A)
$$\frac{\sqrt{3}-1}{4}kc^{2}$$

(A)
$$\frac{\sqrt{3}-1}{4}kc^2$$
 (B) $\frac{\sqrt{3}+1}{4}kc^2$ (C) $\frac{\sqrt{3}-1}{2}kc^2$

(C)
$$\frac{\sqrt{3}-1}{2}kc^2$$

(D)
$$\frac{\sqrt{3}+1}{2}kc^2$$

Solution

$$A \equiv \left(\frac{c}{m_1}, c\right), B \equiv \left(\frac{c}{m_2}, c\right)$$

Area of triangle OAB =
$$\frac{1}{2} \times \left| \frac{c}{m_1} - \frac{c}{m_2} \right| \times |c| = \frac{1}{2} \left| \frac{m_2 - m_1}{m_1 m_2} \right| c^2$$

Since m_1 and m_2 are the roots of the equation $x^2 + (\sqrt{3} + 2)x + (\sqrt{3} - 1) = 0$,

$$m_1 + m_2 = -(\sqrt{3} + 2) \& m_1 m_2 = \sqrt{3} - 1$$

Now,
$$(m_2 - m_1)^2 = (m_2 + m_1)^2 - 4m_2m_1 = (\sqrt{3} + 2)^2 - 4(\sqrt{3} - 1)$$

$$\therefore (m_2 - m_1)^2 = 3 + 4\sqrt{3} + 4 - 4\sqrt{3} + 4 = 11 = k^2$$

$$\therefore m_2 - m_1 = \pm k$$

Now, area of triangle OAB =
$$\frac{1}{2} \left| \frac{m_2 - m_1}{m_1 m_2} \right| c^2 = \frac{1}{2} \left| \frac{\pm k}{\sqrt{3} - 1} \right| c^2 = \frac{\sqrt{3} + 1}{4} kc^2$$

Hence, (B)