Select correct option(s):

(A)	$222^{333} > 333^{222}$	(B)	$222^{333} < 333^{222}$
(C)	$222^{333} = 333^{222}$	(D)	$222^{333} \neq 333^{222}$

Solution

We have to compare $222^{333} & 333^{222}$

Or, we have to compare $2 \times 111^{3 \times 111} \& 3 \times 111^{2 \times 111}$

Let 111 = a

So, we have to compare $(2a)^{3a} \& (3a)^{2a}$

Comparing with log to the base e is justified as ln is an increasing function.

So, we have to compare $3a \ln(2a) \& 2a \ln(3a)$

Or, we have to compare
$$\frac{\ln(2a)}{2a} \& \frac{\ln(3a)}{3a}$$

Let, $\frac{\ln x}{x} = f(x)$
 $f'(x) = \frac{x \cdot \frac{1}{x} - \ln x}{x^2} = \frac{1 - \ln x}{x^2}$

f''(x) < 0 as x is quite large for which $\ln x > 1$

Thus, f(x) is a decreasing function.

So, f(2a) > f(3a) $\therefore \frac{\ln(2a)}{2a} > \frac{\ln(3a)}{3a}$ $\Rightarrow 3a \ln(2a) > 2a \ln(3a)$ $\Rightarrow \ln(2a)^{3a} > \ln(3a)^{2a} \text{ Or } (2a)^{3a} > (3a)^{2a}$ $\therefore 222^{333} > 333^{222}$ Hence, (A) & (D)