Two blocks connected by light inextensible string as shown in the figure are released from rest. Their common speed v after each one of them has moved $\mathrm{d}=30 \mathrm{~cm}$ distance (m moves horizontally and M moves vertically downwards) is given by: [$\frac{m}{M}=\mu=\frac{1}{3}$, $\left.g=10 \mathrm{~ms}^{-2}\right]$

(A) $1 \mathrm{~m} / \mathrm{s}$
(B) $2 \mathrm{~m} / \mathrm{s}$
(C) $4 \mathrm{~m} / \mathrm{s}$
(D) $\sqrt{2} \mathrm{~m} / \mathrm{s}$

Solution

We have, $W_{\text {all }}=\Delta K$
$\therefore W_{g}+W_{f r}=\frac{1}{2}(M+m) v^{2}$
$\therefore M g d-\mu m g d=\frac{1}{2}(M+m) v^{2}$
$\therefore v=\sqrt{\frac{2 g d(M-\mu m)}{M+m}}=\sqrt{\frac{2 g d\left(\frac{M}{m}-\mu\right)}{\frac{M}{m}+1}}$
$\therefore v=\sqrt{\frac{2 \times 10 \times 30 \times 10^{-2}\left(3-\frac{1}{3}\right)}{3+1}}=2 \mathrm{~ms}^{-1}$
Hence, (B)

