The rate law of chemical reaction $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g)$ is given as rate $=k[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$. How does the rate of reaction change if the volume of reaction vessel is reduced to half of its original value assuming the initial moles of both $\mathrm{NO}(\mathrm{g})$ and Oxygen gas are unchanged?
(A) Rate is halved
(B) Rate is doubled
(C) Rate becomes $1 / 8$ times
(D) Rate becomes 8 times

Solution

Let a mole of NO and b mole of O_{2} be taken to start the reaction in a vessel of volume V litre.
$r=k[N O]^{2}\left[O_{2}\right]=k\left(\frac{a}{V}\right)^{2}\left(\frac{b}{V}\right)$
$\therefore r \propto \frac{1}{V^{3}}$
When volume is halved, $r^{\prime} \propto \frac{1}{(V / 2)^{3}}$
$\therefore r^{\prime} \propto \frac{8}{V^{3}}$
So, $\frac{r^{\prime}}{r}=8$
Hence, (D)

