$$
I=\int_{-1}^{0} \ln |x| d x=
$$

(A) -1
(B) 0
(C) 1
(D) -2

Solution

Let $\mathrm{x}=-\mathrm{t}$
So, $I=\int_{1}^{0} \ln |-t|(-d t)=\int_{0}^{1} \ln |t| d t$
Since t is non-negative, we have $I=\int_{0}^{1} \ln t d t$
Now, $\quad I=\ln t .\left.t\right|_{0} ^{1}-\int_{0}^{1} \frac{1}{t} t . t d t$
$\therefore I=\left(0-\lim _{t \rightarrow 0^{+}} t \ln t\right)-1$
$\therefore I=-\lim _{t \rightarrow 0^{+}} t \ln t-1=\lim _{t \rightarrow 0^{+}} \frac{\ln t}{-1 / t}-1$
L. H. Rule is applicable for $\lim _{t \rightarrow 0^{+}} \frac{\ln t}{-1 / t}$
$\therefore I=\lim _{t \rightarrow 0^{+}} \frac{1 / t}{1 / t^{2}}-1=0-1=-1$
Hence, (A)

