If $a, b>0$ and

$$
\Delta=\left|\begin{array}{lll}
x & a & a \\
b & x & a \\
b & b & x
\end{array}\right|
$$

then which of the following option(s) is/are correct?
(A) Δ has a local maximum at $x=\sqrt{a b}$
(B) Δ has a local minimum at $x=\sqrt{a b}$
(C) Δ has a local maximum at $x=-\sqrt{a b}$
(D) Δ has a local minimum at $x=-\sqrt{a b}$

Solution

$\Delta^{\prime}=\left|\begin{array}{lll}1 & 0 & 0 \\ b & x & a \\ b & b & x\end{array}\right|+\left|\begin{array}{ccc}x & a & a \\ 0 & 1 & 0 \\ b & b & x\end{array}\right|+\left|\begin{array}{ccc}x & a & a \\ b & x & a \\ 0 & 0 & 1\end{array}\right|$
$\therefore \Delta^{\prime}=\left(x^{2}-a b\right)+\left(x^{2}-a b\right)+\left(x^{2}-a b\right)=3\left(x^{2}-a b\right)$
Equating $\Delta^{\prime}=0$ yields $x= \pm \sqrt{a b}$
Further, $\Delta "=6 x$
So $\Delta^{\prime \prime}>0$ for $x=\sqrt{a b}$ which means local minimum
$\& \Delta^{\prime \prime}<0$ for $x=-\sqrt{a b}$ which means local maximum
Hence, (B) \& (C)

