If a, b > 0 and

$$\Delta = \begin{vmatrix} x & a & a \\ b & x & a \\ b & b & x \end{vmatrix}$$

then which of the following option(s) is/are correct?

- (A) Δ has a local maximum at $x = \sqrt{ab}$
- (B) Δ has a local minimum at $x = \sqrt{ab}$
- (C) Δ has a local maximum at $x = -\sqrt{ab}$
- (D) Δ has a local minimum at $x = -\sqrt{ab}$

Solution

$$\Delta' = \begin{vmatrix} 1 & 0 & 0 \\ b & x & a \\ b & b & x \end{vmatrix} + \begin{vmatrix} x & a & a \\ 0 & 1 & 0 \\ b & b & x \end{vmatrix} + \begin{vmatrix} x & a & a \\ b & x & a \\ 0 & 0 & 1 \end{vmatrix}$$

$$\therefore \Delta' = (x^2 - ab) + (x^2 - ab) + (x^2 - ab) = 3(x^2 - ab)$$

Equating
$$\Delta' = 0$$
 yields $x = \pm \sqrt{ab}$

Further, $\Delta'' = 6x$

So Δ " > 0 for $x = \sqrt{ab}$ which means local minimum

& Δ " < 0 for $x = -\sqrt{ab}$ which means local maximum

Hence, (B) & (C)