A vertical straight long conductor carries a current I = 3 A vertically upwards as shown in the figure. The distance of the neutral point on the horizontal plane from the wire is: [$B_{H}=3 \times 10^{-5} \mathrm{~T}$]

(A) 0.5 cm
(B) 3 cm
(C) 1.5 cm
(D) 2 cm

Solution

The neural point will be in the west direction as,
$B_{P}=B_{\text {Wire }}-B_{H}$
$\therefore B_{\text {Wire }}=\frac{\mu_{0}}{4 \pi} \frac{2 I}{d}=B_{H}=3 \times 10^{-5}$
$\therefore 10^{-7} \times \frac{2 \times 3}{d}=3 \times 10^{-5}$
$\therefore d=2 \mathrm{~cm}$
Hence, (D)

