The range of the function

$$f(x) = \frac{x^2}{x^4 + 1}$$
 is

(A)
$$\left(0, \frac{1}{2}\right)$$
 (B) $\left[0, \frac{1}{2}\right]$ (C) $\left[\frac{1}{2}, 2\right]$

(B)
$$\left[0, \frac{1}{2}\right]$$

(c)
$$\left[\frac{1}{2}, 2\right]$$

(D)
$$[0,2]$$

Solution

Considering even powers on x, it is clear that $f(x) \ge 0$.

Further,
$$x^4 + 1 = (x^2 - 1)^2 + 2x^2$$

So,
$$x^4 + 1 \ge 2x^2$$

Or,
$$\frac{x^2}{x^4 + 1} \le \frac{1}{2}$$

$$\therefore 0 \le f(x) \le \frac{1}{2}$$

Hence, (B)