A 100 turns square coil of edge 15 cm kept in magnetic field $\mathrm{B}=0.5 \mathrm{Wbm}^{-2}$ carries a current of $\mathrm{I}=1 \mathrm{~A}$ as shown in the figure. Torque acting on the coil is,
(A) $2.25 \mathrm{~N}-\mathrm{m}$
(B) $1.25 \mathrm{~N}-\mathrm{m}$
(C) $11.25 \mathrm{~N}-\mathrm{m}$
(D) $1.125 \mathrm{~N}-\mathrm{m}$

Solution

We have, $\tau=N I A B \sin \theta=100 \times 1 \times 0.15^{2} \times 0.5 \times \sin 90^{\circ}$
$\therefore \tau=100 \times 1 \times 0.15^{2} \times 0.5 \times 1=1.125 N-m$
Hence, (D)

