Find the area of the region $O A O^{\prime} B$ bounded between the identical circles each having radius r.

Solution

Area of segment $\mathrm{AO}^{\prime} \mathrm{B}=\frac{\theta}{360} \times \pi r^{2}-$ Area of triangle OAB

$\cos \frac{\theta}{2}=\frac{O P}{O B}=\frac{r / 2}{r}=\frac{1}{2}, \theta=120^{\circ}$
Area of segment $\mathrm{AO}^{\prime} \mathrm{B}=\frac{120}{360} \times \pi r^{2}-\frac{1}{2} r \times r \times \sin 120^{\circ}=\frac{1}{3} \pi r^{2}-\frac{\sqrt{3}}{4} r^{2}$
Required area $=2 \times$ Area of segment $A O^{\prime} \mathrm{B}=2 \times\left(\frac{1}{3} \pi r^{2}-\frac{\sqrt{3}}{4} r^{2}\right)=2 r^{2}\left(\frac{\pi}{3}-\frac{\sqrt{3}}{4}\right)$

