A particle of mass m is moving in a circular path of constant radius r such that its centripetal acceleration a_{c} is varying with time t as $a_{c}=k^{2} r t^{2}$ where k is a constant. What is the power delivered to the particle by the force acting on it?

Solution

We have, $a_{c}=k^{2} r t^{2}=\frac{v^{2}}{r}$ where v is instantaneous speed at time t .
$v^{2}=k^{2} r^{2} t^{2}$
$\Rightarrow v=k r t$
$v=0$ at $t=0$ which means particle starts at rest and accelerates under the action of some force.
$\Delta K=\frac{1}{2} m v^{2}-0=\frac{1}{2} m(k r t)^{2}=\frac{1}{2} m k^{2} r^{2} t^{2}$
$W=\Delta K=\frac{1}{2} m k^{2} r^{2} t^{2}$
$P=\frac{d W}{d t}=m k^{2} r^{2} t$

