If the series limit frequency of the Lyman series is v_L , then the series limit frequency of the Pfund series is:	$\frac{1}{\lambda} \propto \frac{1}{n_1^2} - \frac{1}{n_2^2}$
(1) $25v_L$	Or, $v \propto \frac{1}{n_1^2} - \frac{1}{n_2^2}$
(2) $16v_L$	In the case of series limit, $n_2 \rightarrow \infty$
(3) $v_L / 16$	$\therefore \nu \propto \frac{1}{n_1^2}$
(4) $v_L / 25$	n_1^2
	For Lyman series, $\nu_L \propto \frac{1}{l^2}$
	For Pfund series, $v_P \propto \frac{1}{5^2}$
	$\therefore v_p = \frac{v_L}{25}$
Based on JEE Main 2018 - <u>123IITJEE</u>	Hence, Option (4).