The potential energy of a particle of mass m at a distance r from a fixed point O is given by $\mathrm{V}(\mathrm{r})=\mathrm{Kr}^{2} / 2$, where k is a positive constant of appropriate dimensions. This particle is moving in a circular orbit of radius R about the point O . If v is the speed of the particle and L is the magnitude of its angular momentum about O , which of the following statements is (are) true?
(A) $v=\sqrt{\frac{k}{2 m}} R$
(B) $v=\sqrt{\frac{k}{m}} R$
(C) $L=\sqrt{m k} R^{2}$
(D) $L=\sqrt{\frac{m k}{2}} R^{2}$

Solution

$$
F=-\frac{d V}{d r}=-\frac{d\left(k r^{2} / 2\right)}{d r}=-k r
$$

Let us now consider the circular motion.

$|\vec{F}|=k R=\frac{m v^{2}}{R}$
$\therefore v=R \sqrt{\frac{k}{m}}$
$L=m v R=m\left(R \sqrt{\frac{k}{m}}\right) R=R^{2} \sqrt{m k}$
Hence, Options (B) \& (C).

