Question

From a solid sphere of mass M and radius R a cube of maximum possible volume is cut. Moment of inertia of cube about an axis passing through its center and perpendicular to one of its faces is:
(1) $\frac{M R^{2}}{16 \sqrt{2} \pi}$
(2) $\frac{4 M R^{2}}{9 \sqrt{3} \pi}$
(3) $\frac{4 M R^{2}}{3 \sqrt{3} \pi}$
(4) $\frac{M R^{2}}{32 \sqrt{2} \pi}$

Solution

For the cube to have largest volume, the eight vertices of the cube should lie on the surface of the sphere.

Hence, diagonal of the cube $=$ diameter of the sphere

$$
l \sqrt{3}=2 R
$$

Mass of cube $=m=\frac{M}{\frac{4}{3} \pi R^{3}} l^{3}$

Consider a plate of small thickness and small mass dm.

For this square plate, moment of inertia about an axis passing through its center and perpendicular to its face $=d I=\frac{d m l^{2}}{6}$.

$$
I=\int \frac{l^{2}}{6} d m=\frac{m l^{2}}{6}=\frac{\left(\frac{M}{\frac{4}{3} \pi R^{3}}\right) l^{3} l^{2}}{6}
$$

$$
I=\frac{M l^{5}}{8 \pi R^{3}}=\frac{M\left(\frac{2 R}{\sqrt{3}}\right)^{5}}{8 \pi R^{3}}=\frac{4 M R^{2}}{9 \sqrt{3} \pi}
$$

123IITJEE.COM
Hence, Option (2).

