If the vectors $\overrightarrow{A B}=3 \hat{i}+4 \hat{k}$ and $\overrightarrow{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a triangle $A B C$, then the length of the median through A is:
(1) $\sqrt{18}$
(2) $\sqrt{72}$
(3) $\sqrt{33}$
(4) $\sqrt{45}$

Solution

Let observer be placed at A, then
$\overrightarrow{A B}=$ position vector of $\mathrm{B} \& \overrightarrow{A C}=$ position vector of C
Since D is the mid-point of $B C$,
position vector of $D=\frac{1}{2}$ (position vector of $B+$ position vector of C)
$\therefore \overrightarrow{A D}=\frac{1}{2}(\overrightarrow{A B}+\overrightarrow{A C})=\frac{1}{2}(3 \hat{i}+4 \hat{k}+5 \hat{i}-2 \hat{j}+4 \hat{k})=\frac{1}{2}(8 \hat{i}-2 \hat{j}+8 \hat{k})=4 \hat{i}-\hat{j}+4 \hat{k}$
$\therefore A D=\sqrt{4^{2}+(-1)^{2}+4^{2}}=\sqrt{33}$ unit

Hence, (3).

