If the vectors $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC, then the length of the median through A is:

(1) $\sqrt{18}$ (2) $\sqrt{72}$ (3) $\sqrt{33}$ (4) $\sqrt{45}$

[JEE Main 2013]

Solution

Let observer be placed at A, then

$$\overrightarrow{AB}$$
 = position vector of B & \overrightarrow{AC} = position vector of C

Since D is the mid-point of BC,

position vector of D = $\frac{1}{2}$ (position vector of B + position vector of C) $\therefore \overrightarrow{AD} = \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right) = \frac{1}{2} \left(3\hat{i} + 4\hat{k} + 5\hat{i} - 2\hat{j} + 4\hat{k} \right) = \frac{1}{2} \left(8\hat{i} - 2\hat{j} + 8\hat{k} \right) = 4\hat{i} - \hat{j} + 4\hat{k}$

:
$$AD = \sqrt{4^2 + (-1)^2 + 4^2} = \sqrt{33}unit$$

Hence, (3).