The intercepts on x-axis made by tangents to the curve, $y=\int_{0}^{x}|t| d t, x \in R$, which are parallel to the line $y=2 x$, are equal to:
(1) ± 1
(2) ± 2
(3) ± 3
(4) ± 4
[JEE Main 2013]

Solution

If $x>0, y=\int_{0}^{x} t d t=\frac{x^{2}}{2}$
Slope of tangent $=\frac{d y}{d x}=x$
Since the tangent is parallel to the line $\mathrm{y}=2 \mathrm{x}$ whose slope $=2$,
$\frac{d y}{d x}=x=2$
$y=\frac{x^{2}}{2}=2$
So, the point of contact is $(2,2)$ and the equation of the tangent is,
$y-2=2(x-2)$
Or, $\mathrm{y}=2 \mathrm{x}-2$ whose intercept on the x -axis is 1 .
If $\mathrm{x}<0, y=\int_{0}^{x}-t d t=-\frac{x^{2}}{2}$
Slope of tangent $=\frac{d y}{d x}=-x$
Since the tangent is parallel to the line $y=2 x$ whose slope $=2$,
$\frac{d y}{d x}=-x=2$ or $x=-2$
$y=-\frac{x^{2}}{2}=-2$
So, the point of contact is $(-2,-2)$ and the equation of the tangent is,
$y+2=2(x+2)$
Or, $y=2 x+2$ whose intercept on the x-axis is -1 . Hence, option (1).

