A circular loop of radius 0.3 cm lies parallel to a much bigger circular loop of radius 20 cm . The centre of the small loop is on the axis of the bigger loop. The distance between their centres is 15 cm . If a current of 2.0 A flows through the smaller loop, then the flux linked with bigger loop is:
(1) 9.1×10^{-11} weber
(2) 6×10^{-11} weber
(3) 3.3×10^{-11} weber
(4) 6.6×10^{-9} weber
[JEE Main 2013]
Solution

Key Concept: The mutual inductance is the same whether current is passed through one coil or the other.

Let us first pass current I_{R} through the large coil,
$\phi_{r}=M . I_{R}=B . \pi r^{2}=\frac{\mu_{0}}{4 \pi} \frac{2 \pi I_{R} R^{2}}{\left(R^{2}+d^{2}\right)^{3 / 2}} \cdot \pi r^{2} \quad \quad$ Since $R \gg r$, magnetic field at a point on the axis of a coil formula can be used]
$\therefore M=\frac{\mu_{0}}{4 \pi} \frac{2 \pi R^{2}}{\left(R^{2}+d^{2}\right)^{3 / 2}} . \pi r^{2}$
Let us now pass current I_{r} through the small coil,
$\phi_{R}=M . I_{r}=\frac{\mu_{0}}{4 \pi} \frac{2 \pi R^{2}}{\left(R^{2}+d^{2}\right)^{3 / 2}} \cdot \pi r^{2} \cdot I_{r} \quad[\mathrm{M}$ remains the same]
$\therefore \phi_{R}=10^{-7} \frac{2 \pi^{2} R^{2} r^{2}}{\left(R^{2}+d^{2}\right)^{3 / 2}} . I_{r} \approx 10^{-7} \times \frac{2 \times 10 \times 0.2^{2} \times 0.3^{2} \times 10^{-4}}{\left(0.2^{2}+0.15^{2}\right)^{3 / 2}} \times 2.0=\frac{2 \times 10 \times 0.2^{2} \times 0.3^{2} \times 10^{-11} \times 2.0}{0.25^{3}}$

On simplification, correct option $=(1)$.

