Tag Archives: Trigonometry

In $\Delta ABC$,

$\left| {\begin{array}{*{20}{c}}{\cos 3A}&{\cos 3B}&{\cos 3C}\\{\cos A}&{\cos B}&{\cos C}\\{\sin A}&{\sin B}&{\sin C}\end{array}} \right| = 0$

Select the right option

(A) Triangle is isosceles
(B) Triangle is equilateral
(C) Triangle is right angled
(D) Triangle is scalene

We have, $\left| {\begin{array}{*{20}{c}}{4{{\cos }^3}A – 3\cos A}&{4{{\cos }^3}B – 3\cos B}&{4{{\cos }^3}C – 3\cos C}\\{\cos A}&{\cos B}&{\cos C}\\{\sin A}&{\sin B}&{\sin C}\end{array}} \right| = 0$

$ \Rightarrow \left| {\begin{array}{*{20}{c}}{4{{\cos }^3}A}&{4{{\cos }^3}B}&{4{{\cos }^3}C}\\{\cos A}&{\cos B}&{\cos C}\\{\sin A}&{\sin B}&{\sin C}\end{array}} \right| – \left| {\begin{array}{*{20}{c}}{3\cos A}&{3\cos B}&{3\cos C}\\{\cos A}&{\cos B}&{\cos C}\\{\sin A}&{\sin B}&{\sin C}\end{array}} \right| = 0$

$ \Rightarrow \left| {\begin{array}{*{20}{c}}{{{\cos }^3}A}&{{{\cos }^3}B}&{{{\cos }^3}C}\\{\cos A}&{\cos B}&{\cos C}\\{\sin A}&{\sin B}&{\sin C}\end{array}} \right| = 0$ as the 2nd determinant is 0.

$ \Rightarrow \cos A.\cos B.\cos C\left| {\begin{array}{*{20}{c}}{{{\cos }^2}A}&{{{\cos }^2}B}&{{{\cos }^2}C}\\1&1&1\\{\tan A}&{\tan B}&{\tan C}\end{array}} \right| = 0$ Continue reading In $\Delta ABC$,

$\left| {\begin{array}{*{20}{c}}{\cos 3A}&{\cos 3B}&{\cos 3C}\\{\cos A}&{\cos B}&{\cos C}\\{\sin A}&{\sin B}&{\sin C}\end{array}} \right| = 0$

Select the right option

Prove That,

$\cos \frac{\pi }{7}-\cos \frac{{2\pi }}{7}+\cos \frac{{3\pi}}{7}=\frac{1}{2}$

L.H.S.=$\cos \frac{\pi }{7} – \cos \frac{{2\pi }}{7} + \cos \frac{{3\pi }}{7}$

= $\cos \frac{\pi }{7} + \cos \frac{{3\pi }}{7} – \cos \left( {\pi – \frac{{5\pi }}{7}} \right)$

= $\cos \frac{\pi }{7} + \cos \frac{{3\pi }}{7} + \cos \frac{{5\pi }}{7}$

= $\cos \left( {\frac{\pi }{7} + \frac{{3 – 1}}{2}.\frac{{2\pi }}{7}} \right).\frac{{\sin \left( {3.\frac{{2\pi /7}}{2}} \right)}}{{\sin \left( {\frac{{2\pi /7}}{2}} \right)}}$ Continue reading Prove That,

$\cos \frac{\pi }{7}-\cos \frac{{2\pi }}{7}+\cos \frac{{3\pi}}{7}=\frac{1}{2}$

Prove that,

${\sin ^3}30^\circ – {\sin ^3}18^\circ = {\sin ^2}18^\circ $

We have, ${\sin ^3}18^\circ + {\sin ^2}18^\circ = {\sin ^2}18^\circ (\sin 18^\circ + 1)$

$ = {\left( {\frac{{\sqrt 5 – 1}}{4}} \right)^2}\left( {\frac{{\sqrt 5 – 1}}{4} + 1} \right)$

$ = \frac{{6 – 2\sqrt 5 }}{{16}} \times \frac{{\sqrt 5 + 3}}{4}$

$ = \frac{{3 – \sqrt 5 }}{8} \times \frac{{3 + \sqrt 5 }}{4}$

$ = \frac{{9 – 5}}{{8 \times 4}} = \frac{1}{8} = {\sin ^3}30^\circ $

$ \Rightarrow {\sin ^2}18^\circ = {\sin ^3}30^\circ – {\sin ^3}18^\circ $