\int\limits_0^{ - 2a} {f(x)dx}  = .........

If the system of equations 2x – y + z =0, x- 2y + z = 0 and ax – y + 2z = 0 has infinitely many solutions and f(x) is continuous function satisfying f(x)+f(x+5) = 2, then

\int\limits_0^{ - 2a} {f(x)dx}
is equal to

a) 0
b) 5
c) a
d) –2a

Solution

For system of given equations to have infinitely many solutions, we must have

\left| {\begin{array}{ccccccccccccccc} 2&{ - 1}&1\\ 1&{ - 2}&1\\ a&{ - 1}&2 \end{array}} \right| = 0

or, 2x(-3) + 2-a + (-1+2a) = 0

or, a = 5

Now,

\int\limits_0^{ - 2a} {f(x)d} x

 = \int\limits_0^{ - 10} {f(x)d} x

 = \int\limits_0^{ - 5} {f(x)d} x + \int\limits_{ - 5}^{ - 10} {f(x)d} x

 = \int\limits_0^{ - 5} {f(x)d} x + \int\limits_0^{ - 5} {f(u - 5)du} ,{\rm{ putting x + 5 = u for the second integral}}

 = \int\limits_0^{ - 5} {f(x)d} x + \int\limits_0^{ - 5} {2 - f(u)du} ,                              \left[ \begin{array}{l} {\rm{Given, f(x) + f(x + 5) = 2}}\\ {\rm{Replacing x by u - 5, }}f(u - 5) + f(u) = 2 \end{array} \right]

 = \int\limits_0^{ - 5} {f(x)d} x + \int\limits_0^{ - 5} {2 - f(x)dx} ,{\rm{ Replacing u by x in the second integral}}

= –10 = -2a

Hence, (d).

Manish Verma on FacebookManish Verma on TwitterManish Verma on Youtube
Manish Verma
Astrology Courses, Vedanta Courses, Vedic Astrologer, Vastu Consultant, Physics Classes, Guitar Guide.

Vedic Astrologer
Vastu Consultant
Astrology Courses
Vedanta Course
Physics Classes
Guitar Guidance

Leave a Reply

Your email address will not be published. Required fields are marked *